Step of Proof: adjacent-sublist 11,40

Inference at * 
Iof proof for Lemma adjacent-sublist:


  T:Type, L1L2:(T List). L1  L2  (xy:T. adjacent(T;L1;x;y x before y  L2
latex

 by ((Auto
CollapseTHEN (((((FLemma `l_before_sublist` [4]) 
CollapseTHENA (Auto))

CoCollapseTHEN ((((((if ((-1) = 0) then BackThruSomeHyp else BHyp (-1) )
CollapseTHEN (Auto))
C
CollapseTHEN (((BLemma `adjacent-before`) 
CollapseTHEN (Auto)))))))) 
latex


C.


Definitions{T}, L1  L2, type List, Type, P  Q, x before y  l, adjacent(T;L;x;y), x:AB(x), x:AB(x)
Lemmassublist wf, adjacent wf, l before sublist, l before wf, adjacent-before

origin