Step of Proof: adjacent-sublist
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
adjacent-sublist
:
T
:Type,
L1
,
L2
:(
T
List).
L1
L2
(
x
,
y
:
T
. adjacent(
T
;
L1
;
x
;
y
)
x
before
y
L2
)
latex
by ((Auto
)
CollapseTHEN (((((FLemma `l_before_sublist` [4])
CollapseTHENA (Auto
))
)
Co
CollapseTHEN ((((((if ((-1) = 0) then BackThruSomeHyp else BHyp (-1) )
)
CollapseTHEN (Auto
))
C
)
CollapseTHEN (((BLemma `adjacent-before`)
CollapseTHEN (Auto
))
))
))
))
latex
C
.
Definitions
{
T
}
,
L1
L2
,
type
List
,
Type
,
P
Q
,
x
before
y
l
,
adjacent(
T
;
L
;
x
;
y
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
Lemmas
sublist
wf
,
adjacent
wf
,
l
before
sublist
,
l
before
wf
,
adjacent-before
origin